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Ekaterinburg GSP-170, Russia 

Received 9 December 1991, in h a l  form 22 April 1992 

AbslracL n e  Hubbard model in the l imil of slrong Coulomb interaction (the (t-J) 
model) is sludied by the diagram technique for Hubbard operators. The generalized 
random-phase approximation (GRPA) is formulated as an approximation raking into 
acmunt eleclmn loop-type diagrams. Within the framework of this approximation, both 
lhe dynamic magnetic and dieleclric susceptibilities are calculated for a wide interval 
of eleclron mncentrations, 0 < n < 1. T h e  magnetic wseeptihilily shows a muover  
in the magnetic behaviour of the system f" pure itinerant magnetism UI magnetism 
with localized magnetic moments. The muover  occurs at a crilical p in t ,  nC, when the 
chemical potential for elecmns of the lower Hubbard tend changes sign. Magnetic phase 
diagrams are constructed on the (t/U, n) plane at T = 0 for different Iypes of crystal 
latlices. ?he khariour of magnetic phases with temperalum is also studied. The GRPA 
leads La a too drastic cmsswer. especially at low temperatures, because of insufficient 
allowance for the charge and spin fluccualions on a sile. Summation of special diagram 
series shows that lhe Gaussian fluctuations of Ihe effective eleclric and magnetic fields 
lead to a smoother pinure of the crmswer. 

1. IntFoduction 

Fundamental models for studying effects of electron correlations are the Hubbard 
model [l] and its limiting case-the (t-J) model [2, 31. In the past few years 
there has been a growing interest in these models owing to the idea of a possible 
non-phonon mechanism of high-lr, superconductivity in copper oxide compounds, 
which are strongly correlated systems [4]. However, investigations in this field are 
conducted mainly for hvo-dimensional models near the half-filling case. At the same 
time, the general problem of possible magnetic states in these models is very far 
from being resolved. One of the main goals of the theory should be to construct a 
phase diagram in the space of parameters ( t / U ,  n, T), where t and U enter in the 
Hubbard Hamiltonian 

and n is the electron concentration, varying in the interval 0 < n < 1. The edge of 
this intewal, n = 1, corresponds to full filling of the lower Hubbard band and to a 
dielectric state with Neel-type antiferromagnetic order. Inside this interval, there are 
ferromagnetic (F) and antiferromagnetic (A) phases; however, the phase boundaries 
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between them have not yet been defined reliably, because of the high complexity of 
the problem, especially in the situation with U - t when a small parameter does not 
exist. 
M different limits are usually used to study the model described by Hamiltonian 

(1.1): Li t and U >> t with successive extrapolations of the obtained results to the 
region U - 1. In the first limiting case the following fundamental result was obtained 
many years ago for the dynamic magnetic susceptibility ( q  = ( q ,  w)) [SI: 

Y A liyumov et a1 

This result corresponds to the random-phase approximation (RPA), an approximation 
where Imp-type diagrams are summed. Here xu(q )  is the Pauli-type magnetic 
susceptibility of a bee-electron gas. Formula (1.2) underlies the description of the 
system's magnetic properties when the parameter U is not too large. 

In the opposite limiting case ( U  >> 1 ) ,  one usually passes from Hamiltonian (1.1) 
to the Hamiltonian of the (1-J) model by excluding states that are in the upper 
Hubbard hand. The Hamiltonian of the (1-J) model is conveniently expressed in 
terms of the Hubbard operators, and a perturbation theory can be developed in the 
form of a diagram technique with Hubbard operators. Such a technique for the (1-J) 
model was constructed by us in 161. This technique is a combination of the usual 
technique for Fermi systems [q and the technique for spin operators [SI. 

In [6, 91 we proposed for the case U >> t the generalized random-phase 
approximation (GRPA) where all loop-type diagrams are summed similar to the case 
U 1. We calculated the magnetic susceptibility for the entire electron concentration 
interval, 0 < n < 1. It turned out that a critical concentration, n,, exists such that 
when n < nE the system behaves as an itinerant magnet, and when n > n, the 
system shows a dual behaviour in the sense that the magnetic susceptibility contains 
two contributions: a term that depends weakly on temperature (as for an itinerant 
magnet) and a term of the Curie type, - 1/T. The latter contribution shows 
that localized magnetic moments appear in the system. Thus, when the electron 
concentration is varied, a crossover from pure itinerant magnetism to magnetism with 
localized magnetic moments takes place. The existence of such a crossover indicates 
.I.̂  ~- -6 .I... r..n.. I.,....̂ ..̂ * .Ln ^Ln-"^ra- ,.e *I.:" ,.--"",...',. -.."-+ t.- ,"...*:rlamrl 
,,,U rJ"C. ". %,.U YR.* .,""l,U., L1.U I.."." -.-. ". ...- -.-. .... Y .  "1 -.." 1--.-- 
satisfactory, because the crossover is tm sharp, especially at zero temperature. This 
means that the charge and spin fluctuations in the system have not been taken into 
account strictly enough in the GRPA approximation. 

The aim of this paper is to study in detail the magnetic properties of the (t-J) 
model in terms of the CRPA in a wide interval of electron concentrations and also to 
make an attempt to go beyond the GRPA. 

The paper is organized as follows. In section 2 a formalism based on the Hubbard 
operators is briefly described and the basic characteristics of the GRPA are formulated. 
In section 3 we calculate, within the framework of the GRPA, the Green functions 
describing the charge- and spin-density fluctuations and also the dynamic magnetic 
and dielectric susceptibilities. We conclude this section by presenting a phase diagram 
on the ( t / U ,  n) plane at T = 0 for the simple cubic lattice. In section 4, in 
calculating the magnetic and dielectric susceptibilities, we take into account Gaussian 
fluctuations. It is shown that these fluctuations lead to a smoother crossover in the 
magnetic behaviour of the system with respect to electron concentrations. In section 5 
we make an extensive study of magnetic phase diagrams for T = 0 on the basis of 
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the general expression for GRPA magnetic susceptibility. Section 6 discusses the limits 
Of didicy of the GRPA and also a number of important unsolved problems. 

2. Generalized random-phase approximation 

It is known 12, 31 that in the case of strong Coulomb repulsion (ti >> 1 )  one can pass 
from the general Hamiltonian (1.1) to the Hamiltonian of the ( t - J )  model. In terms 
of Hubbard operators the Hamiltonian is given by the sum of three contributions [6, 
91: 

7l =?I, + ?IE. + 3icB 

?I" = E+ Ex." + c- Ex;- 
where 

(2.1) 
i i 

?Iefi = J C  (X*:+X,';P - X$+X,<.). (2.3) 
i A  

Here eo = - u h / 2  - p is the energy of a one-electron state on a site (with f i  being 
the chemical potential), h = g f i g H ,  H is the magnetic field and J = @/ti is the 
effective exchange integral. 

In [6] we have developed a perturbation theory with respect to the Hamiltonian 
'I?,, = Xho f Q,, in the form of a diagram technique for Hubbard operators. The 
elements of this technique are fermion Green functions (full lines with white or black 
arrows denote spin projections), boson Green functions (broken lines with an arrow) 
and interactions (wavy and dotted lines for the quantities € ( E )  and J(k) respectively). 
These quantities are the coupling constants for the Hamiltonian fiEn and de,. 

In the same paper [6] we proposed a GRF'A approximation that reduced essentially 
to the following statements: 

(i) As a bare electron4ectron vertex part, a set of three graphs is taken into 
account: 

(ii) The effective electron4ectron vertex part is found from the Bethe-Salpeter 
equation 

summing all diagrams with antiparallel ladders. 
(iii) As a fermion Green function, the expression 

c u ( k )  = V b , ,  - F,(b)I ET(k) = E l ( k )  = (1 - n / 2 ) d k )  -/I (2.6) 
is taken, which corresponds to the Hubhard-1 approximation in the paramagnetic 
phase. 
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Thus, the vertex part is determined by equation (2.5) and contains only loop-type 
diagrams, a circumstance. that allows us to call this approximation a generalized RPA 
It turns out that four types of loops exist: 

The analytical expressions corresponding to these loops (after summing over discrete 
frequencies) are 

where f( E) is the Fermi function. 

(t-J) model. The final result reads 
By using the GWA we calculated 161 the dynamic magnetic susceptibility of the 

x A ~ )  = ~ ! ( k ) / { [ l  - A(k)1[1- Q(k ) l+  x Y ( k ) [ @ ( k )  + J(k)11. (2.9) 

Here is the bare susceptibility, which contains two terms 

xY(k) = t(nnu/T)&m,u - n(k) (2.10) 

that correspond to the Curie-type susceptibility - 1/T and the Pauli-type 
susceptibility depending weakly on temperature. Thus formulae (29) and (2.10) 
reflect a dualism in the magnetic behaviour of the system: the magnetic states are 
simultaneously itinerant and localized ones. The statistical weight of the localized 
states is determined by the factor 

nu = 2 e ~ ’ ~ / ( 1 +  w’’~) (2.11) 

which depends on the chemical potential and temperature. 
continuous function of p / T  at finite T, hut when T = 0 

The factor nu is a 

nu==( 1 p > o  

0 p < o ,  
(2.12) 

This means that when p < 0 a localized contribution to x: is absent and the 
system behaves as an itinerant magnet. When p > 0 equation (2.10) tells us that 
localized magnetic moments appear although the Pauli-type term is also present. The 
chemical potential reverses sign when the electron concentration n = nc is equal to 
2/3 in the Hubbard-1 approximation [6]. 

The Curie-type term in x: is a quasi-static one because it is connected with the 
slow change in the direction of magnetic moment, while fluctuations of the value 
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of magnetic moment are chacterized by electron timescales. Thus formulae (2.9) 
and (2.10) reflect the following behaviour of the system. Fluctuations of the value 
of localized magnetic moment occur on each site of the lattice. Sometimes these 
fluctuations are long-lived, so a magnetic moment has enough time to change its 
direction before it decays. All such fluctuations are described by electron-electron 
loop (2.7). 

The factor nu (2.12) describes a crossover of the system from pure itinerant 
behaviour to a localized one as the electron concentration is varied. Such a drastic 
change of nu is a result of a very crude approximation for the quantity 

8(n, - nL)/ahl,," = (1/2T)n" (2 '3) 

where no = (X"") is the mean number of electrons with spin U =T,1 on a site. 
Expression (2.11) for no corresponds to the vera approximation of perturbation 
theory. Certainly, a crossover for the value nu should be smoother owing to spin 
and charge fluctuations on a site. %king these into account is one of the problems 
solved in our paper. 

3. Magnetic and dielectric susceptibilities of the paramagnetic phase 

Let us introduce the Green functions of spin and charge fluctuations 

D,(gT, g's') = (T( E:-( 7) E$-( T ' ) ) )  

Dc(g7,g'T') = (T(Ng(T)Ng,(T'))) 

where B i -  and N, are the spin- and charge-density operators 

+- = x+t - A,-- Ng = x," + x;-. B9 9 9 

'RI calculate these functions, it is convenient to introduce the matrix function 

D,,,(gS, 9''') = (T( xi"( T)xi,'''( 7'))). (3.3) 

Corresponding to the Xu* operators are two 'ypes of external vertices: a localized 
one (denoted by a thick dot) and an itinerant one (one electron line enters such a 
vertex and one electron line leaves it). Accordingly, the quantity (3.3) has a graphic 
representation whose structure is similar to that for the Green function of transverse 
spin components [6]. In matrix form this expression can be written as 

(3.4) 

t t t 

Each graph in this expression has two external vertices; the left-hand Yertex 
corresponds to the operator Xu" and the right-hand one corresponds to the operator 
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Xu'"' in accordance with the definition (3.3). There are two types of external vertices: 
an itinerant and a localized one corresponding to the operators X++ and X - - :  

Y A Izyumov el a1 

Lmalized vertices 0 ,  mrresponding to the X++ and X - -  operators, are included in 
ovals; they are cumulants of the X-operator product averages. For example, 

means the second-order cumulant for the average (X""X"'" ') .  

the following matrix notations are implied: 
Each graph element in (3.4) is a 2 x 2 matrix. For example, for zero-order graphs 

In the last expression (++) or (--) mean the operator Xtt or X - - .  Thus, rows 
and mlumns of the 2 x 2 matrix are enumerated here by complex indices (++) and 
(--). In expression (3.4) matrix summation over all intermediate indices is implied. 

The four-point vertex parts in the GRPA are determined by a BetheSalpeter 
equation of type (2.5). but the three-point vertices are expressed in terms of the 
four-point vertices, as shown earlier [6]. 

Symbol 

means a total cumulant, which is an infinite set of diagrams with two localized external 
vertices. This object in GRPA obeys the equation 

= + (.......- + 

+ Ex$+J" + -.....a 

This equation takes into account all the graphs that are chains composed of bare 
cumulants linked by Imps (2.7). 

Solving equation (3.6) for 

&d(k) = CEuaDiB 
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requires cumbersome calculations; however, the final result is wonderfully simple. We 
have in the paramagnetic phase 

1 (d,U(k) amu d : ( k )  anU) 

n u 2 ~  d , ( k )  ax+ d , ( k )  ax+ 

K+t(k) = 6nuE d,oK +-- d , (k )  ax, 

1 ( d : ( k )  amu d z ( k )  anu)  (3.7) 
K , - ( k ) = - 6  - . 

Here d!, d:, ds and d, are expressed in terms of the quantities corresponding to the 
loop diagrams (27): 

d! = (1 - A ) ( l -  Q )  - U ( @  + J )  d: = ( l + A ) ( l +  Q) - H(@ - J )  (3.8) 

(3.9) 

The quantities amu/ax+ and anu/ax+ are cumulants of the zero approximation. 
They are composed of the operators Xu". In accordance with the zero-approximation 
Hamiltonian (2.1), the cumulants are calculated with the help of the generating 
functional 

W = Sp (exp(x+X+++ x-X--)) z+ = -e+/T,x_  = -t-/T 

by the formula 

( X ~ I U I  ... x ~ ~ - ~ ) ,  = ( i / w ) a n w / a x , ,  ... azo", 
In expressions (3.7) and (3.9) 

(3.10) 

For the paramagnetic phase we obtain at h = 0 

amu/ax+ = $nu anu/az+ = fnu(i  - nu) (3.1 1) 

where nu is given by (2.11). 
We now present the final result of our calculation of the Green functions Dou, 

with the help of the graphical expression (3.4). Similar calculations have been done 
for the transverse spin Green function in [6], to which we refer the reader for details, 
n u s ,  

1 
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Now, using the definitions (3.1) and (3.2), we write the final results for magnetic and 
dielectric susceptibilities: 

2 s  (k) = ~ : ( k ) / I [ l -  A(k)I[ l -  Q(k) l+  x:(k)[@(k) t J(12)lI 
ioc('.) = x:(k)/I[ l+ A(k) l [ l+  Q(k)l+ ~ ! ( k ) [ @ ( k )  - J(k)l) .  

Here x! and x: are bare susceptibilities 

Y A Izyumov d al 

(3.12) 

(3.13) 

x: = ( l /T) (am, /az+)a ," -  n (3.14) 

x:= ( i p ) ( a n " / a Z + ) a n o -  n .  (3.15) 

The expression (3.12) for the magnetic susceptibility coincides with the expression 
(2.9), which we calculated with the help of the spin Green function for transverse 
components [6]. This coincidence should take place for the paramagnetic phase. 
In [6] we studied, on the basis of expression (29) for x,(k,O), the instabilities of 
the paramagnetic phase with respect to the Occurrence of a magnetic order with 
the wavevectors 12 = 0 and 12 = E,, where k, = ( T , T , T )  is the wavevector 
of antiferromagnetism. 'RI calculate the fundamental quantities II, A, Q and @ 
we took a model with constant density of states. In figure 1 we present results 
of a similar calculation for the simple cubic lattice. The boundaries of F and A 

instabilities remain qualitatively the same as those for a model with constant density of 
states. Ferromagnetism arises when the electron concentration exceeds some critical 
concentration nc = 2/3. The region of antiferromagnetism adjoins the region of 
n 5 1 and broadens as the parameter t / U  increases, that is, with increasing effective 
exchange interaction t 2 / U .  

P 

" 

Figure 1. Phase diagram for the 
simple cubic lattice at T = 9 
C U N ~ S  f, a and c are boundaries 
of F, A and dielectric instabilities 
of the paramagnetic phase. 

The lines of magnetic instabilities are determined by the zeros of the denominator 
in expression (3.12) for the magnetic susceptibility at zero frequency. The zeros of the 
denominator of the dielectric susceptibility determine the curves c in figure 1. The 
system turns out to be unstable with respect to dielectric ordering with k = 0 in the 
sector lying between the c curves. However, the greater part of the unstable region 
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coincides with the region of magnetically ordered states, while the formula (3.15) 
is valid only for the paramagnetic state. Because of that, the region of dielectric 
instability is rather small. 

In figure 1 one can see some overlap of the regions of instability of the 
paramagnetic phase with respect to F or A ordering. ?b determine the genuine 
states of the system in each part of the ( t / U ,  n) plane, it is necessary to compare 
the total energies of these phases. 

At the point n, the chemical potential in the lower Hubbard band changes sign. 
This fact leads to the above-mentioned drastic change in the quantity nu (2.11), 
a change that indicates that localized magnetic moments appear in the system at 
n > n,. 

4. Allowance for the Gaussian fluctuation 

In the zero approximation, the expression (211) for nu gives too drastic a change 
in the system's magnetic properties with varying electron concentration. TI get a 
smoother behaviour, it is necessaly to dress thicken the bare cumulant 

involved in cquation (3.6). The dressing is possible by including into the bare 
cumulant different graphical structures that contain vertices X"". Multiple inclusion 
of single-vertex structures leads only to a shift of the chemical potential in the 
expression for the zero-approximation cumulant and is, therefore, not essential. One 
has to include graphical structures with two vertices at least. 

Let us consider the series 

*L(. . #q . . c&q (4.1) . . . _  . . .  . 2' 

* . * -  . . * -  * - .  
where two-point structures with vertices Xt+ and X-- of all possible combinations 
are included. We shall calculate these structures in GRPA. This means that the graphs 
composed of loops (2.7) must be summed. It can be readily verified that all of these 
graphs are contained in the graphical expression 
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:.Q ... i =.I 2 p.. i .- 2 , i i -  
. I  

i. 
:-. .. .. , :  :O=a2-*... 

l *  .- 
2 6  

I -  
1 

I -  

2 2 

e .  

A similar expression can be written for other two-point structures characterized by 
the vertices X + +  and X - - .  

Denote the quantity (4.2) as Itt(k)  and the associated quantity as Z++(k). Very 
complicated calculations lead, however, to rather simple and clear answers: 

I + + ( k )  = -a(@ + J ) / d , -  a(@ - J ) / d ,  

Z++(k)  = i(@ + J ) / d ,  - $(@ - J ) / d , .  

I - - ( k )  = '++(le) (4.3) 

(4.4) 

These quantities allow one to calculate the two-point structures inserted in cumulants 
of the series (4.1). These structures correspond to the expressions 

Let us write the series f4.1) in analytical form. We denote the bare cumulant as 
a function of two variables f(z+, x - ) .  If we pass on to the new wriables 

(4.5) z = i(z+ + z-) = p / T  y = 5(zt 1 - z-) = i h / T  

the series (4.1) can be represented as the following Tiylor series: 

(4.6) 

It is easy to see that the general term of this series is ( 1 / ~ ! ) ( A ~ / 4 ) " a ~ " f / a r ~ " .  
The total sum of the series reduces to the expression 
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which can be interpreted as averaging f ( x , y )  over the Gaussian fluctuations of the 
fields z and y with Ax and A y  as dispersions of the Gaussian fluctuations. Here 

(4.9) 
@ ( k , O ) - J ( k )  - 1 1 az = --- - - - - C v , ( k , O ) .  

d,(k,O) - T N  T N  k 

As a result of summing the graphical series, the quantities amu/axt  and 
anu/azt in formulae (3.14) and (3.15), corresponding to the second-order 
cumulants, are renormalized to amo/ax+ and anU/ac+.  B h n g  into account the 
explicit expressions 

- I 

we can represent them as 

x 11°C. + F ,  17)[1- nu(. + F ,  1111 (4.11) 

(the external magnetic field is equal to zero). Here 

no(. + E ,  TJ) = 2cosh TJ est< /(1+ 2 msh TJ e'+<). (4.12) 

and 7 are actually electric 
and magnetic field fluctuations created by charge- and spin-density fluctuations. 
The measures of the intensity of these fluctuations (dispersions of the Gaussian 
distribution), A X  and Ay,  are expressed, according to formulae (4.8) and (4.9), 
through the effective interactions uc and us of charge and spin degrees of freedom. 
Because the expressions (4.8) and (4.9) contain a summation over momentum, the 
quantities Ax and A y  are measures of the effective zero-frequency self-interactions 
on a site, which are divided hy the average value of the heat motion energy kT.  Note 
that our theory of Gaussian fluctuations in the (1-J) model is completely similar to 
the situation in the Ising model, where spin fluctuations have been taken into account 
for the first time by summing graphical series for cumulants [SI. 

Consider in detail the expression (4.10). If Ax is small (Ax < Ay),  an integral 
over 

From expressions (4.10) and (4.11), one can see that 

is taken, and we get 

(4.13) 
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This expression is meaningful when Ay > 0. If it turns out that A y  < 0, summing 
the series (4.6) leads to the formula (4.7), where one has to make the replacement 

Y A Lyumov el a1 

f(z+ F , Y  + v )  - f(z + F , y  + iv). 

In particular for the case A z  + 0 we have, instead of formula (4.13), the expression 

which diverges in the limit z -+ M. This indicates that, at low temeprature and 
n > nc, spin fluctuations are very strong and cannot be treated as Gaussian ones; it 
is necessary to take into account the interaction of these fluctuations. 

Similarly, one can consider the limit of small Az in the expression (4.11) and 
also the limit of small Ay in both (4.10) and (4.11). The results of a numerical 
calculation of the one-dimensional integrals obtained from expressions (4.10) and 
(4.11) on integrating Over (when AI + 0) and over 1) (when A y  -+ 0) are 
presented in figures 2 and 3. There, the behaviour of the quantities amu/ax+ and 
ad/&+ is given as a function of the quantities AI and Ay characterizing the 
intensity of the charge and spin fluctuations at any value of parameter I. From 
figure 2, one can see the behaviour of the localized magnetic moment with varying 
z. Wlth increasing AI the drastic crossover from itinerant to localized magnetism 
is smeared. Figure 3 shows the change of anu/az+, which determines the value of 
the localized electric moment arising in the vicinity of the p i n t  z = 0, where the 
chemical potential changes sign. 

- 
- 

I 

- 
~ i g ~ r ~  2 Plat of atno/az+ as a function of z 
with different values of spin and charge fluctuations: 
chain a w e ,  Az = U, Ay = U, full curves, 
AZ = 0, Ay = 0.5 (A), Ay = 4 (B), Ay = 20 
(C); broken curves. Ay = 0, AZ = 4 (A), 
Ar = 20 (B), AZ = Un (C). 

- 
Figure 3. Plot of a d / a z +  as a function of z 
with different values of spin and charge fluctuations: 
chain curve, Az = U, Ay = U, full curves, 
Az = 0, Ay = 4 (A), Ay = 20 (B), Ay = 2w 
(C); bmken curves, Ay = 0, Az = 4 (A), 
AZ = 20 (B), Az = ZW (C). 

Thus fluctuation of charge and spin on a site leads to smearing of the 
features of the quantities amu/az+ and i3nu/azt (corresponding to the mean- 
field approximation) as functions of the parameter z. Determining - the electron- 
concentration and temperature dependences of the quantities amu/az, and 

- Y 
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Bno/az+ is a complicated problem, because the fluctuation parameters Az and 
A y  depend on j~ and T .  These parameters are determined by expressions (4.8) and 
(4.9). 

5. Magnetic phase diagrams of the model 

In this seetion, we discuss in greater detail the system's magnetic properties, which 
one can derive from the geneml expression (2.9) for the magnetic susceptibility. The 
phase diagram for the simple cubic lattice at T = 0 has been shown in figure 1. A 
calculation for the body-centred cubic lattice (and also for the constant density-of- 
states model) shows that the curves restricting the regions of the F and A phases do 
not change very much, so the type of magnetic phase diagram remains qualitatively 
the Same for different lattices. 

Fig"- 4 Phase diagram for h e  simple cubic Figure I Phase diagram for the rimple cubic lattice 
lattice at T = 0 with different antifelromagnetic a1 finite temperatures (full and broken curves are 
dmclures: A, k = ( 0 , 0 , 0 ) ;  B, k = ( O , O ,  n); C, boundaries of F and A phases): A, Tf6t = 0; B, 
k = (0, ff, n); D, k = (n, n, n). T/6t = 0.015; C, T/6t = 0.035; D, T/6t = 

0.055; E T/ht = 0.21; F, T/6t = 0.28. 

Further, we consider again the simple cubic lattice. In figure 1 the region 
of A instability with wavevector k = k, = ( T , T , T )  was shown. In addition to 
this instability, figure 4 shows also curves of instability with respect to different 
antiferromagnetic phases. One can see an interesting tendency. There are two 
intermediate structures with wavevectors (O,O, T )  and (0, T ,  T ) .  The regions of 
instabilities with respect to these structures adjoin the regions of the F and A phases 
respectively. That is, the more ferromagnetic planes there are in an antiferromagnetic 
structure, the closer the structure k to the F phase; and the fewer ferromagnetic 
planes, the closer the structure is to the A phase. It can also be shown that 
the paramagnetic phase is unstable with respect to long-wave modulations of an 
antiferromagnetic phase with k = k, and of a ferromagnetic phase. The regions of 
these instabilities are close to the boundaries of the A and F phases, so we do not 
present the corresponding phase diagram. 

The results of our study of the model at finite temperatures are shown in figures 5 
and 6 From figure 5, one can see that with increasing T the regions of magnetic 
phases reduce in area. Finally, figure 6 shows the temperature dependence of inverse 
magnetic susceptibility. When the temperature h high enough, x-' = T, as in 
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Flgure 6 Bmperature de- 
pendence of inverse mag- 
netic susceptibility for the 
simple cubic lattice at 
t / U  = 0 with different M I -  
u s  of electron mncentm- 
tion. Full NNW, k = 
(O,O,O): 4 n = 0.2, B, 
n = 0.55. C, n = 0.8, 
D, n = 0.98. Broken 
NNeS. k = (r,r,r): A, 
n = 0.4, B, n = 0.55, C, 
n = 0.8, D, II = 1.0. 

the case of non-interacting localized magnetic moments. At low temperatures the 
behaviour of x-' depends on n. When n < nE the curves are concave; when 
n > n, the curves are convex. Note that a similar temperature behaviour of inverse 
susceptibility was obtained in [lo], where the two-loop approximation was used for 
calculating the thermodynamic potential. Such behaviour of x-' at n > n, is specific 
to strongly correlated systems. Particularly, it was revealed in the doubleexchange 
model (s-d model in the strong s-d exchange interaction limit) [ll]. 

6. Conclusions 

In this paper and also in a previous paper [6], we investigated the magnetic properties 
of the (2-J) model with the help of the GRPA approximation. In two other papers (12, 
i3j we used the same appruxiniaiiurl UI iiiiaiy&itg the ixjss3ivj  G: -.;pe:"zL':cti:g 
pairing via the interaction of electrons with spin fluctuations in the ( 1 4 )  model. 

As to magnetism, the most interesting result of the GRPA, in our view, is 
the occurrence of a crossover from pure itinerant to localized magnetism as the 
electron mncentration is varied. Support for this comes from the fact that a Curie- 
type contribution arises in the magnetic susceptibility that 8 proportional to 1/T. 
Originally (61, this crossover was too drastic; at T = 0 it took place at one p i n t  
n = nc, where the chemical potential in the lower Hubbard band changes sign. In 
this paper we have shown that allowance for only Gaussian fluctuations of magnetic 
and electric effective fields leads to smearing of this crossover. More accurate 
allowance for fluctuations permits one to expect a still smoother crossover, which 
is more reasonable from physical considerations. Studying this problem further is 
very important. 

We propose that localized magnetic moments in a system with U > 1 exist 
because of a Curie-type contribution to the magnetic susceptibility. In the technique 
with Hubbard operators such a term appears in a very simple and natural my, by 
contrast with theories starting from the opposite limit U << 1 [14]. In the theories Of 
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strongly correlated systems that exploit the slave boson technique, obtaining a Curie- 
type mntribution to the magnetic susceptibility is also a difficult problem. Specifically, 
in [15] the Curie term in x: is absent. 

The magnetic susceptibility is, however, an integral characteristic of the system. 
It would he interesting to study local characteristics such as 

The first characteristic is the spectral density of a spin correlator; the second one is 
the magnitude of a localized magnetic moment Inspection of expression (2.9) for 
the magnetic susceptibility shows that the evaluation of expressions (6.1) calls for 
numerical calculations and has not yet been done. It would be interesting also to 
calculate, with the help of the local spectral density (l/N)Clcx,(k,O) the mean 
Lifetime rs of a localized magnetic moment and the evolution of a magnetic moment 
with varying electron concentration. We expect that at point n = n, a crossover of 
the quantity rs would take place from the electron timescale A / t  to a larger scale 
that exceeds the spin correlation timescale A/ J. This problem is especially important 
in the limit U - 00. Note also the importance of exploring the sum rule for spin 
correlators calculated in the GRPk 

We now discuss the range of applicability of the GRPA Similar to the RPA in the 
theory of systems with U < 1,  the GRPA for strongly correlated systems U >> t does 
not use explicitly any small parameter. In both cases loop-type diagrams are summed. 
A formal argument for that could be the large number of degenerate electron states f ,  
hecause a loop contains a trace along the discrete indices characterizing the electron 
states and has a factor f .  Clearly, if / were large one would need to sum the graphs 
containing the maximal number of such loops. Because in our case / = 2 (two spin 
projections) a large parameter does not exist, the results of both the GRPA and the 
RPA are interpolative in character. 

At the same time it is well known that RPA theories, for example formula (1.2) 
for the magnetic susceptibility, provide a good description of many properties of the 
system in a large interval of parameters. We hope also that, for strongly correlated 
systems, the GRPA theory gives a correct description of systems in a wide concentration 
interval 0 < n < 1. Recall that one of the most fundamental results of the GRPA 
theory is the description of the crossover from itinerant to localized magnetism. 

At the edges of this interval the GRPA should not give an adequate physical picture 
for two reasons at least. First, as electron states for the zero approximation we take 
the Hubbard-1 approximation. Near the half-filling limit (n = l), this approximation 
is poor. The physical picture near this limit corresponds to a magnetic polaron or 
a quasi-oscillator [16], that is, a hole that moves in an antiferromagnetic matrix. 
Secondly, the idea that fermion states are coherent quasi-particles of the Fermi liquid 
is questionable 1171. As the latest review of this problem, we can mention [U]. Thus 
the regions n << 1 and 1 - n < 1 must be excluded from the electron concentration 
interval where the GRPA can give an adequate description of strongly correlated 
systems. However, small parameters (electron or hole concentrations) exist for these 
regions. It is known that in these situations one has to sum a series of ladder-type 
diagrams rather than loop-type diagrams [19, 201. Such approaches to the theory of 
strongly correlated systems will be developed in a subsequent paper. 
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